表面等离激元(SPP)是一种存在金属与介质界面的电磁模式,具有亚波长传播和局域场增强的特性,因而受到人们的青睐,是微纳尺度下进行光子操纵和集成的优良载体。随着人们对表面等离激元认识的不断深入和对微纳光子器件应用需求的增加,如何在近场范围内精确调控等离激元波的传播并实现特定的场强分布成为人们关注的热点。
我们李涛教授、祝世宁院士研究组在过去几年中发展并推广了一套新颖的面内衍射调控SPP波的方法,实现了诸如Airy波束、准直波束、宽带聚焦与波分复用等效应和功能。后来他们进一步将全息思想引入进来,实现了在金属表面蜿蜒行走的SPP波束。相关研究大大加深了人们对SPP波束特性的理解,并提供了强大的微纳光场调控的手段。今年五月份,李涛教授受邀在《激光与光电子学进展》发表综述文章《表面等离激元的传播操控:从波束调制到近场全息》,系统介绍了该领域的研究进展(该综述论文被评为该刊物第五期优秀论文,见图一)。该文章后半部分还强调,等离激元近场全息将可能是今后发展的重要方向。
图一:表面等离激元传播调控的综述论文。
图二:(a)按照四个方向传播的SPP作为参考光进行空间成像的复用全息设计和样品照片。
(b-e)实验测得由不同方向传播SPP所重构出的空间全息图。
近期,李涛教授、祝世宁院士研究组在SPP波空间辐射全息成像方面又获得新进展,成功通过传播的SPP波与空间的全息目标光场干涉,获得可实现多个成像目标复用的SPP全息图,并可通过不同传播方向的SPP将其读出重构出来。该方法突破了传统偏振复用全息仅有两个正交态的限制,获得了四重无串扰的全息图样(见图二)。他们进一步利用SPP散射单元的取向控制实现将空间衍射全息的偏振调控,并与SPP方向复用相结合,演示了“CEAS”四个字母的四重复用全息成像(见图三)。该样品尺度在几十微米量级,全息成像在样品表面40微米处,获得全息图案可通过入射出射的偏振片进行动态选择调控。
图三:(a)SPP传播与空间偏振联合复用的全息样品图,(b)空间全息示意图及最终实验获得的四重解复用全息成像。
这是一种新颖的以近场表面波为参考光的全息技术,同时引入了SPP传播方向作为全息的复用维度。实验结果显示,这种复用方法最小的串扰角度大约在20度,这样平面内可以有近360/20=18个不同传播方向的SPP可作为复用通道,这大大增加信息加载的容量。同时,以表面波为照明光,大大节约了传统全息的照明空间,有利于在集成光学成像和显示方面应用。本工作虽然以全息成像作为演示结果,其更重要的意义在于将SPP面内传播与空间多维光场调控结合起来,实现了倏逝波的信息与空间光场信息进行有效转换,这一全新的光场调控思路将为微纳尺度下的光子技术开拓了新的方案和研究平台。
该工作近日发表在Nano Letters (DOI: 10.1021/acs.nanolett.7b02295),文章第一作者是我们直博研究生陈绩,通讯作者是李涛教授和王漱明研究员。该工作受到科技部重点研发计划(量子调控和纳米专项),国家自然科学基金创新群体项目、优秀青年基金、面上基金项目的支持,同时也感谢bw必威西汉姆联官网登峰人才计划(B类)的支持。
(李涛)